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Abstract

The edge-effect of the wavelet transform can present a serious limitation to the identification of damping.
In an attempt to overcome the problem posed by the edge-effect, this paper presents three new methods that
are incorporated into the definition of the continuous wavelet transform: the reflected-window method, the
equal-window-area method and the adaptive-wavelet-function method. The effectiveness of these methods was
tested on experimental data. It was found that with these methods the same rate of reliability could be
achieved with a signal that was approximately three times shorter than the signal required by the classical
CWT approach to damping identification.
r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The identification of damping in multi-degree-of-freedom systems is a well-known problem.
A good overview of the different procedures for damping identification is given in the work of
Staszewski [1]. The continuous wavelet transform (CWT) has proved to be very successful in the
identification of damping [1–4], and has been shown to be highly resistant to noise [1]. In a recent
study we showed a resistance of up to 0 dB signal-to-noise ratio [5].
Despite the good results obtained with the CWT, the edge-effect was found to be cumbersome

for relatively short signals. This edge-effect has been studied in a variety of research areas, for
example, weather analysis [6,7], geodesy [8], mechanics [1,2]. The cone-of-influence [6,9], also
known as the radius-of-trust (time-width of the edge-effect), was already qualitatively
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characterised [5,10]. Kijewski and Kareem [9] used a simple padding scheme to meliorate the edge-
effect. Padding is one of the simplest methods of meliorating the edge-effect. There are also other
methods for reducing the edge-effect: zero padding, value padding, decay padding, repeating the
signal, reflecting the signal [11]. There are also more advanced methods, such as extrapolating
with non-linear models [8].
Previous research on the edge-effect was based on modifying the signal; this paper takes a

different direction: it uses CWT modifications to enhance the damping identification at the edges.
The paper is organised as follows: The second section gives some of the basics of damping

identification with the continuous wavelet transform. The third and fourth sections discuss the
edge-effect and the reduction of the edge-effect, respectively. In the fifth section the presented
methods are used to analyse the damping on experimental data. The last section is devoted to the
discussion and the conclusions.

2. The basics of damping identification with the continuous wavelet transform

In this section only a few basic definitions of the CWT and damping identification with the
CWT will be given. For details about the wavelet transform the reader should refer to [12], and for
details about damping identification the reader should refer to [1,2].

2.1. The continuous wavelet transform

The continuous wavelet transform (CWT) of the signal f ðtÞAL2ðRÞ is defined as:

Wf ðu; sÞ ¼
Z þN

�N

f ðtÞc�u;sðtÞ dt; ð1Þ

where u and s are the translation and scale/dilation parameters, respectively [13], and c�u;sðtÞ is the
translated-and-scaled complex conjugate of the basic/mother wavelet function cðtÞAL2ðRÞ: The
wavelet function is a normalised function (i.e. the norm is equal to 1) with an average value of zero
[12,14].
In this study the Gabor wavelet function [12] was used:

cðt;s; ZÞ ¼ wðt;sÞeiZt ¼
1ffiffiffiffiffiffiffiffiffi
p s24

p e�ðt2=2s2Þ

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Gaussian window

eiZt: ð2Þ

The scaled-and-translated wavelet function is:

cu;sðtÞ ¼
1ffiffi

s
p c

t � u

s

	 

: ð3Þ

Some properties of the Gabor wavelet function are shown in Table 1. In the following sections we
will give some attention to the frequency variance s2ou;s

and to the time variance s2tu;s
: The first

defines the frequency spread of the CWT and is therefore important at identifying the damping of
close modes that could interfere. The time spread, on the other hand, defines the width of the
edge-effect in time.
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2.2. Damping identification

For an asymptotic sinusoidal signal, like the response function of a damped system, the CWT
can be approximated by a simple function [15]. Staszewski [1] and Ruzzene et al. [2] used the
Morlet wavelet function, and as a consequence they used the CWT approximation as defined by
Delprat et al. [16]. The approximation for the Gabor wavelet is [5]:

Wxðu; sÞ ¼
1

2
AðuÞ #cGaboru;sðj

0ðuÞ;s; ZÞeijðuÞ þ ErðA0ðtÞ;j00ðuÞÞ; ð4Þ

where #cGaboru;sðo;s; ZÞ is the Fourier transform of the translated-and-scaled Gabor wavelet
function [10]. The approximation error ErðA0ðtÞ;j00ðuÞÞ can be neglected if the derivative of the
phase j0ðuÞ is greater than the bandwidth of the translated-and-scaled Gabor wavelet function
Do [12].
If there is a need to analyse multi-degree-of-freedom systems, then the CWT of any two

components i and j of a multi-component signal should not interfere. Therefore, the maximum of
the bandwidths DoðsiÞ and DoðsjÞ should be smaller than the frequency difference of i and j [12]:

ðj0
iðuÞ � j0

jðuÞÞXmaxfDoðsiÞ;DoðsjÞg ð5Þ

In identifying the damping of mdof systems the assumption of proportional damping is made:
C ¼ aMþ bK; where C; M and K are the damping, the mass and the stiffness matrices,
respectively. As a consequence of the proportionality the natural frequencies are uncoupled and
can be studied independently [1].
For the free response of a damped signal [17]:

xðtÞ ¼ A0e
�zo0t cosðod t þ fÞ; ð6Þ

where od ¼ o0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
denotes the damped natural frequency. The damping identification is now

straightforward. The CWT is calculated, and the ridge of the CWT is located, i.e. s ¼ sðuÞ: And by
using the approximation given by Eq. (4) and the approximation odEo0; the following equation
can be used to identify the damping [1,5]:

AðuÞE
2jWxðu; sðuÞÞj

ð4ps2sðuÞ2Þ1=4
; ð7Þ

lnðAðuÞÞE� zodu þ lnA0: ð8Þ

The slope of lnðAðuÞÞ=od is simply the damping ratio.
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Table 1

Properties of the Gabor wavelet function [10]

Time centre %uu;s u

Frequency centre %ou;s
Z
s

Time variance s2tu;s
s2s2

2
Frequency variance s2ou;s

1

2s2s2
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3. The edge-effect

The wavelet transform is usually computed by employing the convolution theorem. Because the
convolution theorem covers some aspects of the edge-effect the wavelet transform in this study is
bound to the integral in Eq. (1).
In order to demonstrate the edge-effect, Eq. (1) at some translation u is sketched in Fig. 1. It is

clear that a major part of the window (shaded) is inside the signal; however, the part outside the
signal makes the wavelet function non-symmetrical and the amplitude of the wavelet transform
non-proportional to the amplitude of the wavelet transform without the edge-effect. This non-
symmetry causes an error in the phase detection, and the non-proportionality causes an error in
the amplitude detection.
From Fig. 1 it is clear that zero padding makes little sense; however, the effects on the

convolution theorem of such padding are useful.
In the free response of a damped system the amplitudes at the beginning are high and at the end

they are low. When using the circular-convolution theorem, care must be taken because the
influence of the high amplitudes at the beginning results in low amplitudes at the end of the signal.
The effect of circular convolution can be seen on the scalogram of Fig. 5, which is the only figure
made using the convolution theorem in this paper.
The range of the edge-effect is described by the radius of trust [10]:

Rðk; s;sÞ ¼ kstu;s ¼ k
ss

2
; ð9Þ

where k defines the multiple of the time spread. In signals with a relatively low variation of the
amplitude a choice of k ¼ 3–4 would be appropriate, but for a fast-changing (e.g. a highly
damped) signal a higher value for k should be used. In this study k ¼ 6 will be used.

4. Reduction of the edge-effect

4.1. The reflected-window (RFW) method

This method tries to improve the symmetry of the non-symmetrical window on the edge. The
result is similar to the signal reflection, but in this case the window of the wavelet function is
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Fig. 1. Window and the signal at the edge.

M. Boltežar, J. Slavič / Mechanical Systems and Signal Processing 18 (2004) 1065–10761068



reflected (Fig. 2). The advantage, apart the signal reflection, is the continuity of the phase, which is
also shown in the amplitude detection.
The definition of the modified continuous wavelet transform is:

WRFWf ðu; sÞ ¼
Z þN

�N

f ðtÞc�RFWu;s
ðtÞ dt; ð10Þ

where cRFWu;s
is the modified Gabor wavelet function:

cRFWu;s
ðt;s; ZÞ ¼

1ffiffi
s

p 1

ðps2Þ1=4
e�ððt�uÞ=

ffiffi
2

p
ssÞ2 þ e�ððtþuÞ=

ffiffi
2

p
ssÞ2 þ e�ððt�ð2T�uÞÞ=

ffiffi
2

p
ssÞ2

� �
eiZðt�uÞ=s;

ð11Þ

where T is the length of the signal.

4.2. The equal-window-area (EWA) method

With this method there is an attempt to keep the proportionality of the absolute value of the
wavelet transform. On the edge, a part of the window is outside the signal (Fig. 3), therefore the
value of the wavelet transform is increased by an amount equal to the fraction of the whole
window area divided by the window area inside the signal.
At the beginning of the signal the part of the window inside the signal is:

P0ðu; s;sÞ ¼

RþN

0 jcGaboru;sðt; s; ZÞj dtRþN

�N
jcGaboru;sðt; s; ZÞj dt

¼
1þ Erf u=

ffiffiffi
2

p
ss

	 

2

ð12Þ

and at the end of the signal (time T):

PT ðu; s; sÞ ¼

RþT

�N
jcGaboru;sðt; s; ZÞj dtRþN

�N
jcGaboru;sðt; s; ZÞj dt

¼
1þ Erf ðT � uÞ=

ffiffiffi
2

p
ss

	 

2

ð13Þ

The definition of the modified continuous wavelet transform is:

WEWAf ðu; sÞ ¼ P0ðu; s;sÞ
�1PT ðu; s;sÞ

�1
Z þN

�N

f ðtÞc�u;sðtÞ dt ð14Þ
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Fig. 2. Scheme of the reflected-window method.
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4.3. The adaptive-wavelet-function (AWF) method

With the help of the parameter s of the Gabor wavelet function it is easy to set the desired time
or frequency spread (Table 1). Because the frequency spread changes, one should use this method
with care, especially when identifying the damping of multi-degree-of-freedom systems, Eq. (5).
For details about identifying damping at close modes, please refer to [5].
As already mentioned, it is necessary to choose a parameter s that gives the desired time/

frequency spread. Then the parameter k of the radius of trust should be set. The radius of trust
defines the range where the edge-effect should be treated. The idea of the AWF method is to adapt
(at the edge) the time spread of the wavelet function to the defined radius of trust. In the middle of
the signal the CWT is calculated with Eq. (1), but on the edge, instead of the chosen parameter s;
the parameter sR is used, see Eq. (17), as shown in Fig. 4.
To make the wavelet transform comparable for different parameters s it has to be normalised.
The definition of the modified continuous wavelet transform is:

WAWFf ðu; sÞ ¼

uoRðk; s; sÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s

sRðk; u; sÞ

r RþN

�N
f ðtÞc�AWFu;s

ðtÞ dt; or

ðT � uÞoRðk; s; sÞRþN

�N
f ðtÞc�u;sðtÞ dt elsewhere;

8>>>>>><
>>>>>>:

ð15Þ

where

cAWFu;s
ðt;s; ZÞ ¼

1ffiffi
s

p 1

ðp s2Rðk; u; sÞÞ
1=4
e� ðt�uÞ=

ffiffi
2

p
ssRðk;u;sÞ

� �2
eiZðt�uÞ=s; ð16Þ

and

sRðk; u; sÞ ¼

2u

ks
; uoRðk; s;sÞ

2ðT � uÞ
ks

; ðT � uÞoRðk; s; sÞ

8><
>: ð17Þ

Eq. (17) is derived from the radius-of-trust defined by Eq. (9).
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Fig. 3. Scheme of the equal-window-area method.
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When u goes to 0 the time spread sR goes to zero, and consequently the frequency spread goes
to infinity. Therefore, a minimum parameter smin that still provides an acceptable frequency
spread has to be defined. If sRosmin then smin is used instead of sR:
As was shown in our recent studies [5,18], the use of a relatively small parameter s leads to a

frequency shift Do of the CWT amplitude:

Doðs; s; ZÞ ¼
Z�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=s2 þ Z2

p
2s

: ð18Þ

If the maximum allowed frequency shift is defined, then Eq. (18) can also be used to define smin:

5. Experiment

The free response of a steel beam [5] with 15
 30 mm2 cross-section and 500 mm length is
shown in Fig. 5.
The presented algorithms will be used to identify the hysteretic damping factor of the sixth

natural frequency. Since the conventionally used symbol for the hysteretic damping factor Z
already denotes the frequency modulation of the wavelet transform the symbol !Z is used for the
hysteretic damping factor.
The presented damping identification was carried out in terms of viscous damping, so we have

to use the equivalent viscosity of hysteretic damping [19]:

z ¼
!Z
2
: ð19Þ

The parameters of the CWT were Z ¼ 411 775 Hz and s1 Hz ¼ 10: In the case of the truncated
Morlet wavelet function [11] with central frequency f0 ¼ 62:3 Hz; similar effects would be
achieved. These parameters are chosen to ensure a high noise resistance and to limit the
frequency-shift error at 5592 Hz to less than 1 Hz [5].
As this paper focuses on short signals, the minimum time needed to get a relevant damping

identification was searched for. The minimum time needed is approximately 2.5 times the width of
the radius-of-trust R: The width of the useful signal is then 0:5
 R: In the case of the sixth natural
frequency, f6 ¼ 5592 Hz; by using the parameter k ¼ 6; the radius-of-trust is R ¼ 5:4 ms; Eq. (9).
Note: R ¼ 5:4 ms at 5592 Hz represents approximately 30 periods of oscillation.
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Figs. 6 and 7 show classical damping identification with the CWT and classical damping
identification with the CWT using signal reflection, respectively. As noted in Fig. 6, in the case of
the classical/unmodified CWT the damping identification was made on a width of 0:5R ¼ 2:7 ms
(approx. 15 periods of oscillations), which is not affected by the edge.
Figs. 8–10 show damping identification with the CWT using the three proposed methods. For

the adaptable-window method an additional parameter was used: s1 Hz Min ¼ 1:5:
Because the proposed methods reduce the edge-effect a broader time-width was used to identify

the damping. From the 2:5
 R ¼ 13:5-ms-long signal (75 oscillations), the useful part was
11:6 ms instead of 2:7 ms:
As can be seen from Table 2, the classical CWT and the classical CWT with signal reflection

differ by more than 50% from the proposed methods. From Fig. 11 it is clear that the classical
CWT method converges to !ZE1480
 10�6 as the time-width of the signal enlarges. At a width of
approximately 7 times the radius-of-trust ð7
 RE38 msÞ; a similar level of confidence was
reached as when using the RFW, EWA or AWF methods. With the proposed methods instead of
a 38-ms-long signal a shorter signal can be used: 2:5
 RE13:5 ms:
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Fig. 6. lnðAðuÞÞ using the unmodified CWT definition. (- - -) linear approximation of lnðAðuÞÞ between vertical lines.

Fig. 5. Left: response of a free–free beam ð125 msÞ; right: scalogram of (a) 4th, (b) 5th and (c) 6th natural frequency.
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If we were to analyse similar damping of other natural frequencies the minimum time needed to
make a reliable estimation would be the time that corresponds to approximately 75 periods of
oscillation.

6. Discussion and conclusions

To identify the damping on short signals this paper introduces three modifications of the
continuous wavelet transform in order to reduce the edge-effect: the reflected-window method, the
equal-window-area method and the adaptive-wavelet-function method.

ARTICLE IN PRESS

Fig. 7. lnðAðuÞÞ using the unmodified CWT definition and signal reflection. (- - -) linear approximation of lnðAðuÞÞ
between vertical lines.

Fig. 8. lnðAðuÞÞ using the reflected-window method, Eq. (10). (- - -) linear approximation of lnðAðuÞÞ between vertical lines.
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Fig. 9. lnðAðuÞÞ using the equal-window method, Eq. (14). (- - -) linear approximation of lnðAðuÞÞ between vertical lines.

Fig. 10. lnðAðuÞÞ by using the adaptive-wavelet-function method, Eq. (15). (- - -) linear approximation of lnðAðuÞÞ
between vertical lines.

Table 2

Identified hysteretic damping factor

Method !Z
 106

Classical CWT 2056

Classical CWT with sig. ref. 810

Reflected-window method 1554

Equal-window method 1495

Adaptable-window-function method 1519
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In contrast to other researchers, the problem of the edge-effect has been solved here by
modifying the wavelet transform, instead of trying to extend the signal [6–10].
The experimental data analysis showed that the proposed modifications to the continuous

wavelet transform can be used to identify the damping during short signals. To ensure the same
rate of reliability the signals were approximately three times shorter than the ones that were
needed with the classical CWT approach to damping identification.
The classical reflected-time-series method does not ensure the continuity of the phase and its

advantage on the edge is in doubt. This method does not give any improvements when identifying
the damping with the CWT on short signals.
The adaptive-wavelet-function method gives promising results, but it should not be forgotten

that the adaptive wavelet function varies the parameter s; which changes the time–frequency
spread of the Gabor mother wavelet. A high-frequency spread is not advisable with noisy signals
[5] and with multi-component-signals that have close frequencies. The increasing frequency shift
at the edge should also be taken care of.
The equal-window method and the reflected-window method both give relevant results, while

the changes to the wavelet transform are easily implemented and do not need any additional
parameters, as is the case with the AWF method.
In general we can conclude that the proposed methods give more reliable results at same time-

length of the analysed signal.
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